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Abstract: There are three self-dual models of massive particles of helicity +2 (or −2)

in D = 2 + 1. Each model is of first, second, and third-order in derivatives. Here we

derive a new self-dual model of fourth-order, L(4)
SD, which follows from the third-order

model (linearized topologically massive gravity) via Noether embedment of the linearized

Weyl symmetry. In fact, each self-dual model can be obtained from the previous one

L(i)
SD → L(i+1)

SD , i = 1, 2, 3 by the Noether embedment of an appropriate gauge symmetry,

culminating in L(4)
SD. The new model may be identified with the linearized version of

LHDTMG = ǫµνρΓǫ
µγ

[

∂νΓ
γ
ǫρ + (2/3)Γγ

νδΓ
δ
ρǫ

]

/8m +
√−g

[

RµνRνµ − 3R2/8
]

/2m2. We also

construct a master action relating the third-order self-dual model to L(4)
SD by means of a

mixing term with no particle content which assures spectrum equivalence of L(4)
SD to other

lower-order self-dual models despite its pure higher derivative nature and the absence of the

Einstein-Hilbert action. The relevant degrees of freedom of L(4)
SD are encoded in a rank-two

tensor which is symmetric, traceless and transverse due to trivial (non-dynamic) identities,

contrary to other spin-2 self-dual models. We also show that the Noether embedment of the

Fierz-Pauli theory leads to the new massive gravity of Bergshoeff, Hohm and Townsend.
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1 Introduction

It is known that in D = 2 + 1, massive particles of helicity +1 (or −1) can be described

either by a second order gauge theory [1], Maxwell-Chern-Simons (LMCS(Aµ)), or by a

first-order nongauge theory [2], self-dual model (LSD(f)). The physical equivalence of

both theories can be established via a master action [3] depending on both fields Aµ and

fµ which is obtained from the self-dual model LSD(f) by adding a mixing term between

the fields Aµ and fµ. Since the mixing term is a pure first-order Chern-Simons term CS1

with no particle content, the physical equivalence between LMCS(Aµ) and LSD(f) follows

trivially. In particular, this explains why the propagator of the MCS theory contains an

innocuous (vanishing residue [4]) massless pole besides the physical massive pole present in

the self-dual model of [2]. Namely, the non-propagating massless pole is inherited from the

pure Chern-Simons term. Alternatively, one can derive the MCS theory out of LSD(f) via

a two steps Noether embedment ,see [5], of the gauge symmetry δΛfµ = ∂µΛ of the Chern-

Simons term present in LSD(f). Since a couple of parity singlets of opposite helicities +1

and −1 can be combined into one parity doublet (Proca theory), one might try to apply

the Noether gauge embedment (NGE) procedure directly to the Proca model. Indeed, in

the begin of the next section, as an introduction to the rest of the work, we show that in

this case we obtain a (“wrong” sign) Maxwell-Podolsky theory which contains a massive

physical particle plus a massless ghost in the spectrum. Thus, the NGE procedure, in

this case, fails to produce a physical gauge theory. The appearance of ghosts via NGE

has been noticed before in [4]. The analogous of the Proca model for spin-2 particles is

the Fierz-Pauli theory. In the next section we show that in this case the NGE procedure

leads, in D = 2 + 1, precisely to the new massive gravity theory of Bergshoeff, Hohm

– 1 –
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and Townsend (BHT model henceforth) [6]. Such theory shares the same spectrum of the

Fierz-Pauli theory. We explain the difference between the spin-1 and spin-2 cases based on

the different particle contents of the Einstein-Hilbert and Maxwell actions.

In the third and main section we apply the NGE procedure to parity singlets of helicity

+2. We show that the three known self-dual models of first- (S
(1)
SD), second- (S

(2)
SD) and third-

order (S
(3)
SD), see respectively [1, 7, 8], can be related (S

(1)
SD → S

(2)
SD → S

(3)
SD) via Noether

embedment of appropriate gauge symmetries, which is in agreement with the triple master

action of [9]. In subsection 3.3, by embedding a linearized Weyl symmetry present in part

of S
(3)
SD (linearized topologically massive gravity (LTMG)) we obtain a previously unknown

fourth-order self-dual model (S
(4)
SD) dual to the other self-dual models which completes the

sequence of embedment with S
(3)
SD → S

(4)
SD. In section 4 we draw our conclusions.

2 Gauge embedment of parity doublets

2.1 The spin-1 case

It is known that massive particles of spin-1 are described in a covariant way by the Proca

model:

LP = −1

4
FµνFµν − m2

2
AµAµ. (2.1)

Throughout this work we use, µ, ν = 0, 1, 2 and the signature is ηµν = (−,+,+). From

the equations of motion of (2.1) one derives the transverse condition ∂µAµ = 0 and the

Klein-Gordon equation (� − m2)Aµ = 0. The Lagrangian (2.1) contains a parity doublet

of helicities +1 and −1 in D = 2 + 1, for a simple derivation see [10]. The Maxwell term

is invariant under the gauge transformation δΛAµ = ∂µΛ which is broken by the mass

term. One might wonder whether there would exist a gauge invariant description of spin-1

massive particles. Let us show how does the Noether gauge embedment procedure [5] work

in this case. The gauge variation of the Proca action, SP =
∫

d3xLP , can be written as:

δΛSP =

∫

d3xKν∂νΛ (2.2)

The Euler vector is given by Kν = δSP /δAν = (�θνµ − m2gνµ)Aµ with �θνµ = �ηµν −
∂µ∂ν . As a first step in the Noether procedure one introduces a compensating auxiliary

vector field whose gauge transformation is given by δΛaν = −∂νΛ such that:

δΛS1 ≡ δΛ

(

SP +

∫

d3xKνaν

)

=

∫

d3x δΛKνaν

=

∫

d3x
(

−m2∂νΛ aν

)

= δΛ

∫

d3x

(

m2

2
aνaν

)

. (2.3)

Therefore,

δΛS2 ≡ δΛ

∫

d3x

(

LP + Kνaν − m2

2
aνaν

)

= 0 . (2.4)

– 2 –
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Eliminating the auxiliary field aµ by means of its equations of motion from the second

iterated action S2 defined above we end up with the higher-order gauge invariant action:

Sinv. =

∫

d3x

(

LP +
KνKν

2m2

)

=
1

4

∫

d3xFµν

(

1 − �

m2

)

Fµν (2.5)

The addition of a quadratic term in the Euler vector to the Proca theory guarantees that

an arbitrary variation δSinv. =
∫

d3xKν
(

δAν + δKν/m2
)

will vanish at Kν = 0. So the

solutions of the equations of motion of the original Proca theory will be also solutions of

the equations of motion of the new action Sinv.. Thus, the Proca theory is embedded in the

gauge theory (2.5) which is the three dimensional analogue of the Podolsky [11] theory but

with an opposite overall sign. The equations of motion of Sinv., i.e.,
(

� − m2
)

∂µFµν = 0, in

the gauge ∂µAµ = 0, lead to �
(

� − m2
)

Aµ = 0. So, besides the expected massive particle

we have also a massless mode. The overall sign in (2.5) is such that the massive particle

is physical and the massless one is a ghost in agreement with [4]. This is contrary to the

Podolsky theory which is known to contain a massless photon and a massive ghost, see

comment in [12]. In summary, we have not succeeded in deriving a physical gauge theory

for spin 1 particles by a direct embedment of (2.1).1 This can be better understood from the

master action point of view. In the master action approach for massive theories [3, 13, 14],

we add to the original non-gauge theory, the Proca model, a mixing term between the

dual fields with the desired gauge symmetry such that the highest derivative term of the

non-gauge theory is canceled. In the present case we are led to the Master action:

SM (A, Ã) =

∫

d3x

[

−1

4
Fµν(A)Fµν(A) − m2

2
AµAµ +

1

4
Fµν(A − Ã)Fµν(A − Ã)

]

(2.6)

The action (2.6) is invariant under δΛÃµ = ∂µΛ. Due to the positive sign in front of the

Maxwell-type mixing term the path integral over the non-gauge field Aµ leads to a local

theory which is exactly the gauge theory (2.5) with Aµ replaced by the dual gauge field

Ãµ. On the other hand if we make the shift Ãµ → Ãµ + Aµ in (2.6) before any integration

we obtain a Proca theory plus a decoupled Maxwell term with “wrong” overall sign which

is the origin of the massless ghost in agreement with [4].

2.2 The spin-2 case

In the last subsection, we have obtained a higher order Maxwell-Podolski-type model with

a ghost. Here we will see that the same procedure applied to the Fierz-Pauli theory (spin-2

analogue of Maxwell-Proca model) leads us to a higher order theory without ghosts in the

spectrum, the differences will be explained in the master action context. The spin-2 higher

order model, is the linearized version of the new massive gravity suggested in [6].

We start with the Fierz-Pauli [15] theory, which describes in D = 2+1 a parity doublet

of massive particles of helicities +2 and −2, see [10] again for a simple proof. Introducing

1If we linearize the Proca theory by introducing an auxiliary vector field we do derive a physically

consistent gauge model dual to the Proca theory which is the D = 2+1 version of the Kalb-Ramond theory.

– 3 –
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a source term we can write this theory as follows:

SFP[j] =

∫

d3x

[

1

2
Tµν(h)T νµ(h) − 1

4
T 2(h) − m2

2
(hµνhνµ − h2) + jµνhµν

]

(2.7)

=

∫

d3x

[

1

2

(√
−gR

)

hh
− m2

2
(hµνhνµ − h2) + jµνhµν

]

(2.8)

where (
√−gR)hh stands for the quadratic truncation of the Einstein-Hilbert action in the

Dreibein fluctuations about a flat background (eαβ = ηαβ + hαβ) and

Tµν(h) ≡ ǫµαβ∂αhβ
ν = −Eµβhβ

ν , (2.9)

Eµβ ≡ ǫµβδ∂
δ (2.10)

It is important to mention that throughout this work we use second rank tensor fields, like

hαβ in (2.7), with no symmetry in their indices. Symmetric and antisymmetric combina-

tions will be denoted respectively by: h(αβ) ≡ (hαβ + hβα) /2 and h[αβ] ≡ (hαβ − hβα) /2.

The Fierz-Pauli action leads to the following equations of motion (at vanishing sources)

EµαEνβh(αβ) = m2 (hνµ − ηνµ h) (2.11)

from which one can derive all the required constraints to describe a spin-2 particle in

D = 2 + 1:

h = hµ
µ = 0 (2.12)

h[αβ] = 0 (2.13)

∂αhαβ = 0 = ∂βhαβ (2.14)

as well as the Klein-Gordon equation
(

� − m2
)

hαβ = 0.

Regarding the NGE procedure it is important to note that the Einstein-Hilbert action

(
√−gR)hh is invariant under the local gauge symmetries:

δGhµν = ∂µξν + ǫµναΛα (2.15)

which are broken by the Fierz-Pauli mass term. In order to embed these symmetries in a

new model, we calculate the Euler tensor from SFP[j]:

Mµν =
δSFP[j]

δhµν
= EβνT ν

β − 1

2
EνµT − m2(hνµ − ηµνh) + jµν (2.16)

Then, we propose the following first iterated action S1 by using an auxiliary tensor field

aµν such that

δGaµν = −δGhµν (2.17)

S1 =

∫

d3x (LFP + aµνM
µν + jµνhµν) (2.18)

Following the same steps of the previous subsection, it is easy to prove that the action

below, is invariant under the gauge transformations (2.15), (2.17):

S2 =

∫

d3x

(

LFP + jµνhµν + aµνMµν − m2

2
(aµνaνµ − a2)

)

(2.19)

– 4 –
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Getting rid of the auxiliary fields by means of their algebraic equations of motion we obtain

Linv. = LFP + jµνhµν +
1

2m2
MµνMνµ − 1

4m2
M2 (2.20)

= −1

2
TµνT νµ +

1

4
T 2 +

1

4m2
h(ρσ)�

2(2θρνθσµ − θρσθµν)h(µν) + jµνHµν(h) (2.21)

where we have neglected quadratic terms in the sources which are not important for our

purposes and

Hµν(h) =
1

m2

[

−EβµEνα +
1

2
EνµEβα +

ηµν

2
EβγE α

γ

]

hαβ (2.22)

The action (2.21), at vanishing sources, corresponds exactly to the quadratic truncation of

the new massive gravity recently proposed [6] up to an overall 1/2 factor, i.e.,

Linv. = LBHT (j) =

[

−
√−g

2
R +

1

2m2

(

RµνR
µν − 3

8
R2

)]

hh

+ jµνHµν(h) (2.23)

The action (2.23) is invariant under the local symmetries (2.15) as required. From the

linear terms in the sources of (2.7) and (2.23) we have the dual map

hµν ↔ Hµν(h) (2.24)

The quadratic terms in the Euler tensors in (2.20) assure once again that the equations of

motion of the Fierz-Pauli theory (at vanishing sources) are embedded in the BHT equations

of motion which are, at jµν = 0,

�
2(2θρνθσµ − θρσθµν)h(µν) = 2m2 (EρµEσν)h(µν) . (2.25)

In fact we can rewrite (2.25) in the form (2.11) by noting that from (2.22) we have

m2(Hµν(h) − ηµνH(h)) = EρµEσνh(ρσ) and applying the operator EρµEσν on (2.22)

we can verify EρµEσνHµν(h) = �
2
(

2θβρθασ − θρσθβα
)

h(αβ)/2m
2. Then, (2.25) implies

EµαEνβHαβ = m2
[

H(νµ)(h) − ηνµH(h)
]

which, compare with (2.11), confirms the dual

map (2.24) at classical level.

From the remarks of the previous subsection one might wonder whether the higher

derivative BHT theory contains ghosts introduced by the NGE procedure. As shown in [16]

this is not the case. A simple demonstration is based on the following master action [6]

which parallels (2.6):

SM

[

h, h̃
]

=

∫

d3x

[

1

2

(√
−gR

)

hh
− m2

2
(hµνhνµ − h2) − 1

2

(√
−gR

)

h−h̃,h−h̃

]

(2.26)

On one hand, the additional mixing term of the Einstein-Hilbert type cancels out the first

term of (2.26) such that the integration over hµν becomes Gaussian which gives rise exactly

to the BHT theory (2.23) with hµν substituted by the dual field h̃µν . On the other hand, if

instead of integrating over hµν we shift h̃µν → h̃µν +hµν the “wrong” sign Einstein-Hilbert

term decouples from the Fierz-Pauli theory. Since, contrary to the Maxwell term in the

spin-1 case, the Einstein-Hilbert term has no particle content, the spectrum of the BHT

model must be the same of the Fierz-Pauli theory which explains the success of the NGE

procedure in the spin-2 case.

– 5 –
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3 Gauge embedment of parity singlets of spin-2

3.1 Embedding S
(1)
SD in S

(2)
SD

In this section our starting point is the first order self-dual model of [7] which describes a

massive particle of helicity +2 in D = 2+1. Introducing a source term for future purposes

we have:

S
(1)
SD[j] =

∫

d3x

[

m

2
ǫµνλf α

µ ∂νfλα − m2

2
(fµνf νµ − f2) + fµνj

µν

]

(3.1)

The equations of motion of (3.1) in the absence of sources,

E λ
µ fλα = m (ηµα f − fαµ) , (3.2)

also lead to the constraints (2.12), (2.13) and (2.14) and the Klein-Gordon

equation
(

�−m2
)

fαβ = 0. From (3.2) we have the helicity equation
(

JµPµ/
√
−P 2+2

)αβγδ

fγδ = 0, with 2αβγδ = 2
(

δαγδβδ+δαδδβγ
)

, Pµ = −i∂µ and

(Jµ)αβγδ = i
(

ηαγǫβµδ+ηβγǫαµδ+ηαδǫβµγ+ηβδǫαµγ
)

/2 , see [17], which assures that we are

dealing with a parity singlet of helicity +2.

The local symmetry

δξfµν = ∂µξν (3.3)

of the first term in (3.1) is broken by the Fierz-Pauli mass term and the source term.

However, through the Noether gauge embedment procedure, we can recover it. Repeating

the procedure of last section, we begin by computing the Euler tensor:

Mβγ =
δS

(1)
SD[j]

δfβγ
= −mEβλf γ

λ − m2(fγβ − ηβγf) + jβγ (3.4)

With the help of an auxiliary field which satisfies δξaβγ = −∂βξγ we can define a first-

iterated action

δξS
(1) = δξ

∫

d3x
(

L(1)
SD + aβγMβγ

)

=

∫

d3x aβγδξM
βγ = δξ

∫

d3x
m2

2
(aβγaγβ − a2),

(3.5)

where we have used δξaµν = −δξfµν . Thus, we can obtain the gauge invariant model:

L2 = L(1)
SD − aβγMβγ − m2

2
(aβγaγβ − a2) (3.6)

Solving the equations of motion for aβγ and replacing the solutions we find, after dropping

quadratic terms in the sources,

L(2)
SD = L(1)

SD + fµνj
µν +

1

2m2
MνµMµν − 1

4m2
M2 (3.7)

=
1

2
Tµν(f)T νµ(f) − 1

4
T 2(f) − m

2
fµνT

µν(f) + jµνFµν(f), (3.8)

=
1

2

(√
−gR

)

ff
− m

2
ǫµαβfµν∂αf ν

β + jµνFµν(f), (3.9)

– 6 –
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where eαβ = ηαβ + fαβ and

Fµν(f) =
1

m

[

T νµ(f) − ηµν

2
T (f)

]

, (3.10)

Note that the last two terms in (3.7) are quadratic in the Euler tensor which guarantees

again the embedment of the equations of motion of L(1)
SD in the second-order model L(2)

SD

which has appeared before in [8]. Comparing the terms linear in the sources in (3.1)

and (3.9) we arrive at the dual map between L(1)
SD and L(2)

SD:

fµν ↔ Fµν(f) (3.11)

Indeed, minimizing (3.8) at vanishing sources we find:

Eµα

(

T α
ν (f) − η α

ν

T (f)

2

)

= −m Tµν(f) , (3.12)

which can be recast as:

E λ
µ Fλα = m (ηµαF − Fαµ) . (3.13)

Comparing with (3.2) we confirm the dual map (3.11) at classical level. The same map2

holds at quantum level up to contact terms in the correlation functions. Since contact

terms have no poles, the particle content of L(1)
SD and L(2)

SD coincide, namely, one massive

mode of helicity +2. From the master action point of view this is a consequence of using

a first-order Chern-Simons term (CS1), which has no particle content, as a mixing term in

going from L(1)
SD to L(2)

SD [9].

3.2 Embedding S
(2)
SD in S

(3)
SD

It turns out that the Einstein-Hilbert term in (3.9) depends only upon the symmetric

combination f(µν), therefore it is invariant under the local symmetry:

δΓfµν = ǫµναΓα , (3.14)

which is broken by the first-order Chern-Simons mass term in (3.9). This suggests another

round of the NGE procedure. The Euler tensor from S
(2)
SD2

is given by

Mµν =
δS

(2)
2

δfµν
= EβµT ν

β − 1

2
EνµT − mT µν + Gµν(j). (3.15)

where we have defined

Gµν(j) =
Eλµjν

λ

m
− Eνµj

2m
. (3.16)

Again, with the help of an auxiliary field aβγ such that

δΓaµν = −ǫµνδΓ
δ = −δΓfµν (3.17)

2There is a mistake in the definition of the dual Fµν on the right handed side of formula (19) of [9] where

Tµν should be replaced by Tνµ.

– 7 –
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we can write the first iterated action:

S1 =

∫

d3 x
[

L(2)
SD + fµνG

µν(j) + aµνMµν + O(j2)
]

(3.18)

such that

δΓS1 = δΓ

(

−
∫

d3 x
m

2
(aµνEµβa ν

β )

)

(3.19)

So we derive

L2 = L(2)
SD + aµνMµν +

m

2
(aµνEµβa ν

β ) + fµνG
µν(j) + O(j2), (3.20)

which is invariant under (3.14) altogether with (3.17). Although the equations of motion of

the auxiliary fields are not algebraic as in the last subsection, they can still be eliminated

in a trivial way leaving us with a local gauge invariant action. For this aim, note that the

Euler tensor can be written as

Mµν = Eµβ

(

−T ν
β +

ην
β

2
T + mf ν

β −
jν

β

m
+

ην
βj

2m

)

≡ Eµβb ν
β (3.21)

Now we can decouple the auxiliary fields by using:

aµνEµβb ν
β +

m

2
(aµνEµβa ν

β ) = − 1

2m
bµνEµβb ν

β +
m

2
(ãµνEµβ ã ν

β ) , (3.22)

Where ãµν = aµν +bµν/m. Neglecting the last term in (3.22) which has no particle content,

we obtain the invariant Lagrangian density:

Linv. = L(2)
SD − 1

2m
bµνMµν + fµνG

µν(j) (3.23)

Once again we have neglected quadratic terms in the sources. Although (3.23) is linear in

the Euler tensor, due to (3.21) we have the general variation:

δSinv. =

∫

d3xMµν

(

δfµν − 1

m
δbµν

)

(3.24)

Consequently, the equations of motion of S
(2)
SD, Mµν = 0, are embedded in the equations

of motion of Sinv.. The action Sinv. is of third-order and can be rewritten, dropping terms

O(j2), as

Linv. ≡ L(3)
SD = − 1

2m
fαµ(�θαγEβµ − �θαµEβγ)fγβ − 1

2
TµνT νµ +

1

4
T 2 + jµν F̃µν(f) (3.25)

= − 1

8m

{

ǫµνρΓǫ
µγ

[

∂νΓ
γ
ǫρ + (2/3)Γγ

νδΓ
δ
ρǫ

]}

ff
− 1

2

(√
−gR

)

ff
+ jµν F̃µν(f)(3.26)

Note the change of the sign of the Einstein-Hilbert term. This is similar to the change of

the sign of the Maxwell term in going from (2.1) to (2.5). The theory L(3)
SD corresponds to

the quadratic truncation of the topologically massive gravity of [1]. Above, we have defined

F̃αβ(f) =
EαγEβλf(γλ)

m2
(3.27)

Comparing (3.1) and (3.26) we find the dual map

fαβ ↔ F̃αβ . (3.28)

Once again, the dual map (3.28) holds at classical and quantum level (up to contact terms),

see [9], which assures the spectrum equivalence between S
(3)
SD and S

(2)
SD.
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3.3 New self-dual model for spin-2 particles

Only the symmetric combination f(µν) appears in S
(3)
SD , explicitly,

S
(3)
SD[j] =

∫

d3x

[

− 1

2m
f(λµ)�θλαEµδf(αδ) −

1

2
f(λµ)E

λδEµαf(αδ) + jλµF̃ λµ(f)

]

(3.29)

Once more the highest derivative term of the action contains an extra local symmetry

not shared by the remaining terms. Namely, the first term of S
(3)
SD is invariant under the

linearized Weyl transformation:3

δwfµν = φηµν (3.30)

while this is not true for the Einstein-Hilbert term. By imposing this new symmetry we

will arrive at yet another self-dual model for spin-2 particles in D = 2 + 1. We start with

the Euler tensor

Mβγ =
δS

(3)
SD [j]

δfβγ
= EβµEγνb(µν) = M (βγ) (3.31)

where b(µν) is given by:

b(µν) = −
[

f(µν) +
(ηδ

νE α
µ + ηδ

µE α
ν )f(αδ)

2m
+

j(µν)

m2

]

(3.32)

Following the same steps of last examples we end up with the action

S2 =

∫

d3x

[

L(3)
SD + a(βγ)E

βµEγνb(µν) −
1

2
a(βγ)E

βµEγνa(µν)

]

, (3.33)

After decoupling the auxiliary fields and neglecting a term of the Einstein-Hilbert form

(−1/2)ã(βγ)E
βµEγν ã(µν) where ã(βγ) = a(βγ) − b(βγ), which has no propagating degree of

freedom, we obtain:

L(4)
SD = L(3)

SD +
1

2
b(βγ)E

βδEγαb(αδ) (3.34)

=
1

4m2
f(ρσ)(2�

2θρνθσµ − �
2θρσθµν)f(µν) +

1

2m
f(λµ)�θλαEµδf(αδ) (3.35)

−
j(αδ)E

ρα
�θδσf(σρ)

m3
(3.36)

This is a new self-dual model for particles of helicity +2 (or −2 depending on the sign of the

third-order term). It corresponds to the sum of a third order gravitational Chern-Simons

term LCS3 ≡ ǫµνρΓǫ
µγ

[

∂νΓγ
ǫρ + (2/3)Γγ

νδΓ
δ
ρǫ

]

and the fine tuned curvature square term of [6]

at linearized level with appropriate coefficients, i.e.,

L(4)
SD =

1

2m2

(

RµνRµν−
3

8
R2

)

ff

+
1

8m

{

ǫµνρΓǫ
µγ

[

∂νΓ
γ
ǫρ+(2/3)Γγ

νδΓ
δ
ρǫ

]}

ff
+j(αβ)G

αβ(f)

(3.37)

3The third order gravitational Chern-Simons (CS3) term is invariant under Weyl transformations

δwgµν = 2φ gµν which reduce to δwfµν = φηµν when we truncate CS3 to quadratic terms about a flat

background

– 9 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
1

where

Gαβ(f) = − �

2m3

[

Eρ
αθδ

β + Eρ
βθδ

α

]

f(ρδ) (3.38)

The new model is invariant under all local symmetries (3.3), (3.14) and (3.30). Since

both quartic- and third-order terms of (3.37) are invariant by the same set of gauge sym-

metries, the NGE procedure naturally terminates. Comparing (3.1) and (3.37) we have

the duality between S
(1)
SD and S

(4)
SD established by the dual map:

fµν ↔ Gµν(f) (3.39)

By using the identities Eνµθµδ = E δ
ν , EνµEµδ = �θδ

ν and EναEλδ =
(

θνδθαλ − θνλθαδ
)

it

is easy to derive from (3.38) that Eλ
γ Gµγ = −(�2/2m3)

(

θλαθµβ + θµαθλβ − θλµθαβ
)

f(αβ).

Consequently, the equations of motion of S
(4)
SD:

�
2
(

θλαθµβ + θµαθλβ − θλµθαβ
)

f(αβ) = �

(

θλαEµβ + θµαEλβ
)

f(αβ) (3.40)

can be recast as

Eν
µGµλ = Gνλ (3.41)

which is exactly of the form (3.2) if we note, see (3.38), the identity Gµ
µ = 0. Consequently,

the dual map (3.39) between S
(1)
SD and S

(4)
SD is verified at classical level. In particular, if we

apply the operator Eα
ν on (3.41) and use(3.41) again we obtain the Klein-Gordon equation

(

� − m2
)

Gαβ = 0. It is remarkable that all necessary constraints to describe a spin-2

massive particle, i.e., Gµ
µ = 0 = G[µν] , ∂µGµν = 0 = ∂νGµν follow now from trivial identi-

ties instead of dynamic equations differently from the other three self-dual models. In this

sense the S
(4)
SD model is the most natural description of spin-2 parity singlets in D = 2 + 1.

Regarding the particle content of the S
(4)
SD model at quantum level, we turn again to a

master action:

SM [f, f̃ ] =

∫

d3x
1

2

[

1

m
(LCS3)ff −

(√
−gR

)

ff
− 1

m
(LCS3)f−f̃ ,f−f̃

]

(3.42)

Using the notation of [9] we can rewrite (3.42) as follows:4

SM [f, f̃ ] =
1

4

∫

[

−Ω(f) · dΩ(f)

m
+ f · dΩ(f) +

Ω(f − f̃) · dΩ(f − f̃)

m

]

(3.43)

=
1

4

∫

[

Ω(f̃) · dΩ(f̃)

m
− 2Ω(f̃) · dΩ(f)

m
+ f · dΩ(f)

]

(3.44)

=
1

4

∫

[

−Ω(f̃)·dΩ(Ω(f̃ ))

m2
+

Ω(f̃)·dΩ(f̃ )

m
+

(

f−Ω(f̃)

m

)

·dΩ

(

f−Ω(f̃)

m

)]

(3.45)

After the shift f → f +Ω(f̃)/m the first two terms of (3.45) correspond exactly to the new

S
(4)
SD self-dual model as function of f̃µν while the last term is a pure Einstein-Hilbert action

4In [9] we have defined
R

h · g ≡

R

d3x hµνǫ αβ
µ ∂αgβν and used Ωα

λ(f) = −ǫαβγ [∂λfγβ + 2 ∂γf(λβ)] as

defined in [8].
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depending only on fµν . So the particle content of the master action (3.42) is the same of

S
(4)
SD. On the other hand, if we start from (3.43) and shift f̃µν → f̃µν + fµν we obtain the

S
(3)
SD[f ] model and a pure (decoupled) linearized gravitational Chern-Simons term with no

particle content [18]. Therefore, it is clear that S
(4)
SD and S

(3)
SD share the same spectrum,

i.e., one massive physical particle of helicity +2. This can be confirmed by a calculation of

the sign of the imaginary part of the residues at the poles of the propagator of S
(4)
SD when

saturated with conserved and traceless (as required by the linearized Weyl symmetry)

sources. In fact, there are two poles in the propagator of the S
(4)
SD model, one massive and

one massless (ghost-like). It turns out that the traceless condition on the sources get rid

of a ghost-like massless pole and we are left with one physical massive pole [19].

4 Conclusion and comments

In the second section we have shown that the (linearized) BHT model can be obtained from

the Fierz-Pauli theory via Noether embedment. In principle, the same procedure applies

in higher dimensions however, the Einstein-Hilbert action becomes dynamical for D > 3

and by the arguments given here we expect that the embedment would lead to a massless

ghost. In other words, for D > 3 the NGE of spin-2 massive particles is similar to the

spin-1 case where we have obtained a (“wrong” sign) Maxwell-Podolsky theory.

The section 3 contains a natural chain of Noether gauge embedment: S
(1)
SD → S

(2)
SD →

S
(3)
SD → S

(4)
SD. All terms of the S

(4)
SD model have the same local symmetry, so the embedment

terminates at the S
(4)
SD. This is similar to the spin-1 case where both Maxwell and firs-

order Chern-Simons terms are invariant under the same gauge transformations, so the

embedment of the first-order model of [2] terminates after one round at the MCS theory.

It is interesting to remark that only in the model S
(4)
SD the necessary constraints to

describe a spin-2 particle are identically (non-dynamically) satisfied which make us believe

that S
(4)
SD is the most natural description of spin-2 parity singlets in D = 2 + 1, just like

the MCS theory automatically incorporates the transverse condition ∂µFµ = 0, where

Fµ = ǫµνα∂νAα/m is the dual of the self-dual field fµ of [2]. Quite surprisingly, the S
(4)
SD

model, which contains only third- and fourth-order terms, is spectrally equivalent to the

other lower-order self-dual models. From the master action point of view this follows from

the triviality (no particle content) of the linearized third-order gravitational Chern-Simons

term (CS3). In fact, from this standpoint, the existence of the dual theories S
(2)
SD, S

(3)
SD and

S
(4)
SD follows from the trivial cohomology of the differential operators which appear in the

CS1, linearized Einstein-Hilbert and linearized CS3 terms. There seems to be a one-to-one

correspondence between differential operators of trivial cohomology and dual theories.

This is also true in the spin-1 case where the first-order topological Chern-Simons term

(CS1) is apparently the only one which could be used in the master action approach to

generate a dual theory to the first-order self-dual model of [2], in this case one obtains the

Maxwell-Chern-Simons theory of [1].

Finally, since S
(4)
SD may be interpreted as the linearized version of the model

L±
HDTMG = ±ǫµνρΓǫ

µγ

[

∂νΓ
γ
ǫρ + (2/3)Γγ

νδΓ
δ
ρǫ

]

/8m +
√−g

[

RµνRνµ − 3R2/8
]

/2m2, one

– 11 –
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might consider it as a toy model for a massive gravitational theory despite the absence of

the Einstein-Hilbert term.

Note added. After uploading our work we have been informed of the preprint [20] where

the S
(4)
SD model also appears.
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